
DRAFT

ATMET Technical Note
Number 2

Common Customizations
for RAMS v6.0

Prepared by:

ATMET, LLC
PO Box 19195
Boulder, Colorado 80308-2195

October 2006

Table of Contents
1 Adding Array Space to the Model ... 3

1)src/memory/mem_turb.f90: An Example..3

2 I want to add… .. 5

…a local scratch array for computations within the routine.......................5

…a scratch array to pass computations among routines.............................5

…an array to store values for writing to output files..................................5

…a new prognostic variable...7

3 Customization of Initial Atmospheric Prognostic Fields 9

4 Adding a New Source Term to Model Prognostic Fields 13

Common Customizations for RAMS v6.0

It is often necessary for a user to modify one or more sections of the atmospheric model
code to customize it for a particular application. While the namelist variables described in
the Model Input Namelist Parameters document control the vast majority of options
available in the model, it is simply not practical to place all foreseeable options under their
control. Therefore, we will describe here some of the most commonly encountered reasons
for requiring code modifications, and present the most straightforward means of
accomplishing each.

This document assumes not only that the user understands FORTRAN programming, but
also various more recent concepts. In particular, the Fortran 90 user-defined datatypes must
be understood. If you are not very familiar with the usage of the datatypes, please consult a
Fortran 90 programming manual first.

The following discussion does not address the concept of “thread-safe” programming and
shared-memory parallelism. RAMS does not use this yet, but we are moving in this
direction. So if you intend to be developing code for the future, you want to consider these
issues.

1 Adding Array Space to the Model

RAMS is mostly programmed in standard Fortran 90. If you wanted to, you could bypass
all the existing memory structures and simply add new arrays with standard declaration and
dimension statements. However, it is usually extremely desirable to take advantage of the
existing structure to have the new arrays be included in file I/O and/or the parallel
processing.

In some applications, a user needs to dimension a new array in the atmospheric model for
various reasons. These reasons may include:

 adding one or more new prognostic fields
 adding one or more new diagnostic fields for output

V6.0 is significantly easier to program than previous versions that used the “A” array to
configure memory. However, a completely different method of memory configuration is
used which may involve learning new concepts. We will first look at one of the existing
memory modules as an example.

1) src/memory/mem_turb.f90: An Example

All significant model memory in RAMS is dynamically-allocated. The primary 3D and 2D
variables are allocated in the mem_* modules in the src/memory subdirectory. These
modules will be called by subroutine rams_mem_alloc in src/memory/alloc.f90 to allocate
the main memory.

Let’s look at the main components of one of the memory modules as an example. Using
mem_turb.f90 as the example, we see the various parts of the module:

1) Declaration statements – the primary declaration is that of the turb_g user-defined
datatype (which can be loosely viewed similar to a C structure). Once all the
allocations are performed, there will be, for example, the TKE variable that can be
accessed by turb_g(ngrid)%tkep(k,i,j). tkep is declared as a pointer, which is a
member of the turb_g datatype.

2) alloc_turb – routine which actually allocates the memory. Note some options may
be checked for conditional allocation.

3) nullify_turb – routine which makes sure the datatype member pointers are
disassociated with any memory.

4) dealloc_turb – routine which deallocates the pointer memory.
5) filltab_turb – for the arrays that are allocated, enter the variable into various

variable tables. This is accomplished by passing a character string, delineated by
colons (:), which contains a number of parameters. As you can see, this is where the
VTABLE information was put. We determined that if you could figure out
VTABLE file, you could easily make the same modifications in code!

a. Name – name assigned to the variable for the analysis files
b. Dimensionality – an integer code defining the subscript type

i. 2 – 2 dimensions (nxp,nyp)
ii. 3 – 3 atmospheric dimensions (nzp,nxp,nyp)

iii. 4 – 4 soil dimensions (nxp,nyp,nzg,npatch)
iv. 5 – 4 snow dimensions (nxp,nyp,nzs,npatch)
v. 6 – 3 LEAF dimensions (nxp,nyp,npatch)

c. Variable tables
i. anal – write variable to analysis files

ii. hist – write variable to history files (obsolete)
iii. mpti – parallel table – send variable from master to node during

initialization
iv. mpt3 – parallel table – send variable from node to master at file

write times
v. mpt1 – parallel table – exchange variable boundaries among

subdomains during the timestep

To make the array space that is configured in a module available to a Fortran subroutine,
use the Fortran use statement directly after the subroutine statement. So for example:

subroutine mysub(n1,n2,n3)
use mem_turb

Note the use statement specifies the module name, not the file name (as in an include
statement). This is rather similar, in practice, to declaring a variable in a common block and
using an include statement. However, the details are substantially different.

It is left an en exercise to the reader to compare a few of the mem_*.f90 modules with
mem_turb.f90 to recognize the similarity of structure.

2 I want to add…

…a local scratch array for computations within the routine.

If the new array space is only required within one subroutine, it is simplest to add the
appropriate declaration statement to that subroutine. Note that all routines use implicit
none, so make sure to use the appropriate integer, real, etc. declaration. It is your choice
whether to use static, dynamically-allocated, or automatic arrays.

If you need several scratch variables and/or you don’t want to be bothered making sure you
allocate the array big enough, you can use the global scratch arrays. These arrays are listed
in mem_scratch.f90. You can either use the module:

use mem_scratch

then reference the arrays such as:

scratch%vt3da(k,i,j) = scratch%vt3db(k,i,j)

or you can pass them through the call statement (usually more efficient on current
compilers):

call mysub2(nzp,nxp,nyp,scratch%vt3da)

subroutine mysub2 (n1,n2,n3,scr_arr_a)
implicit none
integer :: n1,n2,n3
real, dimension(n1,n2,n3) :: scr_arr_a

…a scratch array to pass computations among routines.

In this situation, you probably want to use the global scratch arrays. However, you must be
careful that no other routines use the scratch array between the time you fill it and the time
you want to use the results.

…an array to store values for writing to output files.

Sometimes you may want to save values that the model computes in order to write them to
the output analysis files. In this case, it is easiest to add the variable to the existing memory

modules. Therefore, you do not need deal with the actual output yourself; the model will
take care of it. Let’s say you wanted to add the turbulent vertical temperature flux to the
analysis files. Let’s again use the example of mem_turb.f90. Let’s say you wanted to add
the turbulent vertical temperature flux to the analysis files. Here are the steps for editing the
module:

1) Determine the dimensionality of the variable. Add the pointer name to the
appropriate list of 2-D or 3-D variables. Let us assume we will add a 3-D variable
which we will name tflux. The declaration statement will then be modified to:

! Variables to be dimensioned by (nzp,nxp,nyp)
 real, pointer, dimension(:,:,:) :: tkep,epsp,hkm,vkm,vkh,cdrag,tflux

2) Add the allocation to the alloc_turb routine:

 subroutine alloc_turb (turb,n1,n2,n3,ng)
.
.
.
 allocate (turb%tflux(n1,n2,n3))

Include the proper conditional statements if the allocation is dependent on namelist
options.

3) Add the deallocate and nullify calls to nullify_turb and dealloc_turb routines. Note
the associated intrinsic function will check to see if the array exists before
performing the functions.

4) Add a tflux call to filltab_turb:

Notes:
 The turbm datatype is used for storing the time-averaged fields. Even if you

have no plans on using them, include it in the call (memory is not actually
allocated if you aren’t using them).

 The hist table is obsolete, as history files are no longer written. Just the anal
table would be fine.

 You need to determine which parallel table(s) to include. In this example,
most likely only mpt3 is needed, unless you do want this variable to be read
on a history restart. Then mpti is required also.

All that is left, then, is to add the new array to the appropriate routines to actually fill in the
values.

 subroutine filltab_turb (turb,turbm,imean,n1,n2,n3,ng)
.
.
.
 if (associated(turb%tflux)) &
 call vtables2 (turb%tflux(1,1,1),turbm%tflux(1,1,1) &
 ,ng, npts, imean, &
 'TFLUX :3:hist:anal:mpti:mpt3:mpt1')

And of course, there would be REVU modifications if you wanted to access the variable…

…a new prognostic variable.

In past RAMS versions, many users added new prognostic variables by using the
NADDSC feature. In v6.0, it is much easier to simply add the variable to an existing
module, or if it is a new parameterization, to add a new module.

The modifications to add a new prognostic variable start out exactly the same as above.
Some additional comments:

1) The RAMS naming conventions have a “P” as the last character of prognostic
variable name. This “P” is replaced by a “T” for the tendency (see below).

2) Same

3) Same

4) If the variable needs to be communicated across parallel subdomain boundaries, the
mpt1 table is needed to be specified. If you are not concerned with efficiency and
you are not sure, you can specify this table anyway.

So, follow the 4 steps above, then let’s go on for a few more:

5) Edit mem_tend.f90. The declaration statements designate the names of the time
tendency arrays (rate of change of the variable for a timestep). As in the comment
for step 1, add a tendency array for your variable, taking into account the naming
convention.

6) In subroutine alloc_tend, add the allocate statement for your tendency array.

7) Add the appropriate statements to nullify_tend and delloc_tend.

8) If the variable is to be considered a “scalar” variable, in filltab_tend, we must add a
call to vtables_scalar to:

a. Associate the tendency array with the prognostic variable array
b. Give the scalar an internal name. This does not need to be the same as the

name for the analysis files, but it can be.

What is meant by a “scalar” variable? If you specify a prognostic variable to be a
scalar, it will be defined at the thermodynamic point in the stagger and it will be
automatically advected, diffused (using the eddy viscosity for heat), participate in
the two-way nesting algorithms, and updated in time with other scalars in the
timestep cycle. Unless of course, you can add code to change this automatic

behavior where you do not want it to occur (example: TKE is a scalar, but a
different eddy viscosity coefficient is used.)

If you do not want the variable to be a scalar, it does not need to be included in
filltab_tend.

That is all that needs to be done for the memory configuration. There still, of
course, are things to consider. You may want to define an initial field for your
variable. We will discuss that below. And you may want to add some source/sink
terms to the model code. A simple example of specifying a tendency will be
mentioned below also.

Developing an entirely new memory module which includes prognostic variables is
just as easy. One of the existing modules can be used as a template. The only
additional step is that a section in src/memory/alloc.f90 needs to be added. Again,
an existing section there can be used as a template.

Note that the scalar variables added through the NADDSC feature go through this
same process. The various variable names are defaulted as follows:

 Internal scalar name: SCLP001, SCLP002, etc.
 Tendency pointer name: scalar_g(nsc,ng)%sclt
 Field pointer name: scalar_g(nsc,ng)%sclp

o nsc – scalar number (1:NADDSC)
o ng – grid number

 Analysis file name (also used in REVU): SCLP001, SCLP002, etc.

3 Customization of Initial Atmospheric Prognostic Fields

It is often desired to initialize certain atmospheric fields, such as potential temperature and
moisture mixing ratio, with specific horizontally inhomogeneous perturbations. For
example, a high resolution simulation of a thunderstorm may be initialized with a local
region of enhanced temperature and moisture to trigger the onset of convection at a specific
location. Another example is in using automatically added scalar fields (see description of
namelist variable NADDSC), where initial values of the scalar field are required to be
nonzero. Or perhaps you have added your own prognostic variables, as mentioned above.

Following is a simple example to modify or specify initial fields for RAMS. The following
template subroutine, called subroutine bubble, is provided in the file ruser.f90 in order to
customize one or more prognostic fields in the model.

The first step is to determine where to call the perturbation routine. The usual place to call
the routine is during the initialization procedure, before you need to worry about
parallelization. This way, we have the full arrays available for all grids.

Note that the included subroutine bubble was intended to add a warm, moist perturbation
to initiate convection. However, any type of values can be set for any field in a similar
routine.

Take a look at src/init/rdint.f90. Find the following section (we will not specify line
numbers, since they go out of date easily!):

! Initialize past time level velocity and perturbation Exner
function
! on all grids.

 do ifm=1,ngrids
 call newgrid(ifm)
 call fldinit(1)
 call negadj1(nzp,nxp,nyp)
 call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

 if (level == 3) then
 call initqin(nzp,nxp,nyp &
 ,micro_g(ifm)%q2 (1,1,1) &
 ,micro_g(ifm)%q6 (1,1,1) &
 ,micro_g(ifm)%q7 (1,1,1) &
 ,basic_g(ifm)%pi0 (1,1,1) &
 ,basic_g(ifm)%pp (1,1,1) &
 ,basic_g(ifm)%theta (1,1,1) &
 ,basic_g(ifm)%dn0 (1,1,1))
 if(icloud == 7) call initqin2(nzp,nxp,nyp &
 ,micro_g(ifm)%cccnp (1,1,1))
 if(ipris == 7) call initqin3(nzp,nxp,nyp &
 ,micro_g(ifm)%cifnp (1,1,1) &
 ,basic_g(ifm)%dn0 (1,1,1))
 endif

 enddo

This section performs various initialization functions and is executed for all
RUNTYPE=’INITIAL’ types. It is also the last grid loop in this section.

So here is one good place to add a call to bubble.

! Initialize past time level velocity and perturbation Exner function
! on all grids.

 do ifm=1,ngrids
 call newgrid(ifm)
 call fldinit(1)
 call negadj1(nzp,nxp,nyp)
 call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

 call bubble (n1,n2,n3, &
 basic_g(ifm)%thp(1,1,1), basic_g(ifm)%rtp(1,1,1))
.
.
.

subroutine bubble(m1,m2,m3,thp,rtp)
implicit none
integer :: m1,m2,m3,i,j,k
real, dimension(m1,m2,m3) :: thp,rtp
 do j = 1,1
 do i = 17,26
 do k = 2,7
 thp(k,i,j) = thp(k,i,j) + 5.
 rtp(k,i,j) = rtp(k,i,j) * 1.2
 enddo
 enddo
 enddo
return
end

In this example, two 3-D arrays, potential temperature (thp) and total water mixing ratio
(rtp) are passed to the subroutine, as are the dimensions (m1,m2,m3) of the arrays. They
illustrate an example where thp (theta il) is increased by 5 K and rtp (total water mixing
ratio) is increased by 20% in the lowest 6 model levels (k=2,7) and over 10 different
locations in the x-direction (i=17,26).

Note that because of where we placed the call statement, this routine will be called for all
grids. If you only wanted to give the perturbation to grid 2, you can place the call outside of
the grid loop, then specify the grid index and explicit grid point dimensions:

! Initialize past time level velocity and perturbation Exner
function
! on all grids.

 do ifm=1,ngrids
 call newgrid(ifm)
 call fldinit(1)
 call negadj1(nzp,nxp,nyp)
 call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

.

.

.
 enddo

 call bubble (nnzp(2),nnxp(2),nnyp(2) &
 , basic_g(2)%thp(1,1,1), basic_g(2)%rtp(1,1,1))

Or, you could leave the call in the original location and pass in the grid number, then check
it in the bubble routine:

! Initialize past time level velocity and perturbation Exner
function
! on all grids.

 do ifm=1,ngrids
 call newgrid(ifm)
 call fldinit(1)
 call negadj1(nzp,nxp,nyp)
 call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

 call bubble (n1,n2,n3, ,ifm, &
 basic_g(ifm)%thp(1,1,1), basic_g(ifm)%rtp(1,1,1))
.
.

subroutine bubble(m1,m2,m3,ng,thp,rtp)
implicit none
integer :: m1,m2,m3,ng,i,j,k
real, dimension(m1,m2,m3) :: thp,rtp

 if (ng == 2) then
 do j = 1,1
 do i = 17,26
 do k = 2,7
 thp(k,i,j) = thp(k,i,j) + 5.
 rtp(k,i,j) = rtp(k,i,j) * 1.2
 enddo
 enddo
 enddo
 endif
return
end

And please note: you can change the name of the routine. It does NOT have to be called
bubble!

4 Adding a New Source Term to Model Prognostic Fields

Another need which sometimes arises in the use of the atmospheric model is to add an
artificial forcing term to one or more prognostic fields. For example, as an alternative to
placing a warm, moist perturbation in the initial fields to trigger convection as described in
the previous section, a heat and moisture source may instead be imposed in a region of the
domain. This source adds the heat and moisture gradually over a period of time.

The following template subroutine, called subroutine force, is a simple example which
customizes a prognostic field in the model.

 subroutine force(n1,n2,n3,tht)
 implicit none
 integer :: n1,n2,n3
 real :: tht(n1,n2,n3)

 integer :: i,j,k

 do j = 10,12
 do i = 17,26
 do k = 2,7
 tht(k,i,j) = tht(k,i,j) + 0.001
 enddo
 enddo
 enddo

 return
 end

In this example, the 3-D array tht, which is the potential temperature tendency in [K/s], is
incremented by a value of 0.001 K/s.

A routine such as force should be called from subroutine TIMESTEP (rtimh.f90) by adding
a call such as the following after the call to TEND0 (which will zero out all tendency
arrays), but before the call to PREDTR:

 if(time < 1800.) call force(nzp,nxp,nyp,tend%tht(1))

In this example, the artificial forcing term is applied to tht only during the first 1800
seconds of the simulation. As you should have seen in mem_tend.f90, the tendency arrays
are one dimensional, since they are used for multiple grids.

A BIG caveat: the preceding code is only correct for a run on a single processor. So it
might be appropriate to include here a few words about distributed memory parallelism.

When you run in parallel, RAMS, as most codes of this kind, uses domain decomposition
to achieve parallelism. This means that portions of each grid are executed on different
processors. Each processor is only given a portion of the total domain. When subroutine

timestep is executed, there are numerous copies of the routine that are running, each with
its own domain portion. Therefore, when calling a routine such as force, you need to make
sure that the perturbation is applied in the proper location relative to the whole domain.

When code is executed with a “grids” loop, which includes a call newgrid (subroutine
timestep qualifies), there are several variables set up for you to help locate this subdomain:

 mxp, myp, mzp – mxp and myp are the total number of horizontal grid points of the
subdomain on the current processor. mzp is the same as nnzp(ngrid). For all 3-D, 2-
D, soil, snow, etc. variables, these are the array bounds that are actually allocated
on a processor.

 ia, iz, ja, jz – the bounds of the subdomain relative to mxp and myp which this
processor is responsible for updating the variables. A do loop then, such as:

do j = ja,jz
 do i = ia,iz
.
.
.
 enddo
enddo

will loop over all the columns which this processor will update.

 i0, j0 – the “offsets” for this processor. For example, when you add the i value from
the previous loop to i0, you will get the i grid point value relative to the whole grid,
not just the subdomain portion.

 ibcon – not used here, but is a 4-byte flag designating whether the subdomain
boundaries are full domain boundaries

So let’s rewrite subroutine force taking into account the parallelism. We will apply the
perturbation over the same points relative to the entire grid.

 if(time < 1800.) call force(mzp,mxp,myp &
 ,ia,iz,ja,jz,i0,j0,tend%tht(1))

The routine will be called from the same location.

 subroutine force(m1,m2,m3 &
 ,ia,iz,ja,jz,i0,j0,tht)
 implicit none
 integer :: m1,m2,m3,ia,iz,ja,jz,i0,j0
 real :: tht(m1,m2,m3)

 integer :: i,j,k

 do j = ja,jz
 do i = ia,iz
 do k = 2,7
 if (i+i0 >= 17 .and. i+i0 <= 26 &
 .and. j+j0 >= 10 .and. j+j0 <=12) &
 tht(k,i,j) = tht(k,i,j) + 0.001
 enddo
 enddo
 enddo

 return
 end

There are obviously more efficient ways to write this, but it provides an example.

	1Adding Array Space to the Model
	2I want to add…
	3Customization of Initial Atmospheric Prognostic Fields
	4Adding a New Source Term to Model Prognostic Fields

