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Common Customizations for RAMS v6.0 

It is often necessary for a user to modify one or more sections of the atmospheric model 
code to customize it for a particular application.  While the namelist variables described in 
the Model Input Namelist Parameters document control the vast majority of options 
available in the model, it is simply not practical to place all foreseeable options under their 
control.  Therefore, we will describe here some of the most commonly encountered reasons 
for requiring code modifications, and present the most straightforward means of 
accomplishing each.  

This document assumes not only that the user understands FORTRAN programming, but 
also various more recent concepts. In particular, the Fortran 90 user-defined datatypes must 
be understood. If you are not very familiar with the usage of the datatypes, please consult a 
Fortran 90 programming manual first.

The following discussion does not address the concept of “thread-safe” programming and 
shared-memory parallelism. RAMS does not use this yet, but we are moving in this 
direction. So if you intend to be developing code for the future, you want to consider these 
issues.

1 Adding Array Space to the Model

RAMS is mostly programmed in standard Fortran 90. If you wanted to, you could bypass 
all the existing memory structures and simply add new arrays with standard declaration and 
dimension statements. However, it is usually extremely desirable to take advantage of the 
existing structure to have the new arrays be included in file I/O and/or the parallel 
processing. 

In some applications, a user needs to dimension a new array in the atmospheric model for 
various reasons. These reasons may include:

 adding one or more new prognostic fields
 adding one or more new diagnostic fields for output

V6.0 is significantly easier to program than previous versions that used the “A” array to 
configure memory. However, a completely different method of memory configuration is 
used which may involve learning new concepts. We will first look at one of the existing 
memory modules as an example.

1) src/memory/mem_turb.f90: An Example



All significant model memory in RAMS is dynamically-allocated. The primary 3D and 2D 
variables are allocated in the mem_* modules in the src/memory subdirectory. These 
modules will be called by subroutine rams_mem_alloc in src/memory/alloc.f90 to allocate 
the main memory.

Let’s look at the main components of one of the memory modules as an example. Using 
mem_turb.f90 as the example, we see the various parts of the module:

1) Declaration statements – the primary declaration is that of the turb_g user-defined 
datatype (which can be loosely viewed similar to a C structure). Once all the 
allocations are performed, there will be, for example, the TKE variable that can be 
accessed by turb_g(ngrid)%tkep(k,i,j). tkep is declared as a pointer, which is a 
member of the turb_g datatype.

2) alloc_turb – routine which actually allocates the memory. Note some options may 
be checked for conditional allocation.

3) nullify_turb – routine which makes sure the datatype member pointers are 
disassociated with any memory.

4) dealloc_turb – routine which deallocates the pointer memory.
5) filltab_turb – for the arrays that are allocated, enter the variable into various 

variable tables. This is accomplished by passing a character string, delineated by 
colons (:), which contains a number of parameters. As you can see, this is where the 
VTABLE information was put. We determined that if you could figure out 
VTABLE file, you could easily make the same modifications in code!

a. Name – name assigned to the variable for the analysis files
b. Dimensionality – an integer code defining the subscript type

i. 2 – 2 dimensions (nxp,nyp)
ii. 3 – 3 atmospheric dimensions (nzp,nxp,nyp)

iii. 4 – 4 soil dimensions (nxp,nyp,nzg,npatch)
iv. 5 – 4 snow dimensions (nxp,nyp,nzs,npatch)
v. 6 – 3 LEAF dimensions (nxp,nyp,npatch)

c. Variable tables
i. anal – write variable to analysis files

ii. hist – write variable to history files (obsolete)
iii. mpti – parallel table – send variable from master to node during 

initialization
iv. mpt3 – parallel table – send variable from node to master at file 

write times
v. mpt1 – parallel table – exchange variable boundaries among 

subdomains during the timestep

To make the array space that is configured in a module available to a Fortran subroutine, 
use the Fortran use statement directly after the subroutine statement. So for example:

subroutine mysub(n1,n2,n3)
use mem_turb



Note the use statement specifies the module name, not the file name (as in an include 
statement). This is rather similar, in practice, to declaring a variable in a common block and 
using an include statement. However, the details are substantially different.

It is left an en exercise to the reader to compare a few of the mem_*.f90 modules with 
mem_turb.f90 to recognize the similarity of structure.

2 I want to add…

…a local scratch array for computations within the routine.

If the new array space is only required within one subroutine, it is simplest to add the 
appropriate declaration statement to that subroutine.  Note that all routines use implicit 
none, so make sure to use the appropriate integer, real, etc. declaration. It is your choice 
whether to use static, dynamically-allocated, or automatic arrays.

If you need several scratch variables and/or you don’t want to be bothered making sure you 
allocate the array big enough, you can use the global scratch arrays. These arrays are listed 
in mem_scratch.f90. You can either use the module:

use mem_scratch

then reference the arrays such as:

scratch%vt3da(k,i,j) = scratch%vt3db(k,i,j)

or you can pass them through the call statement (usually more efficient on current 
compilers):

call mysub2(nzp,nxp,nyp,scratch%vt3da)

subroutine mysub2 (n1,n2,n3,scr_arr_a)
implicit none
integer :: n1,n2,n3
real, dimension(n1,n2,n3) :: scr_arr_a

…a scratch array to pass computations among routines.

In this situation, you probably want to use the global scratch arrays. However, you must be 
careful that no other routines use the scratch array between the time you fill it and the time 
you want to use the results.

…an array to store values for writing to output files.

Sometimes you may want to save values that the model computes in order to write them to 
the output analysis files. In this case, it is easiest to add the variable to the existing memory 



modules. Therefore, you do not need deal with the actual output yourself; the model will 
take care of it. Let’s say you wanted to add the turbulent vertical temperature flux to the 
analysis files. Let’s again use the example of mem_turb.f90. Let’s say you wanted to add 
the turbulent vertical temperature flux to the analysis files. Here are the steps for editing the 
module:

1) Determine the dimensionality of the variable. Add the pointer name to the 
appropriate list of 2-D or 3-D variables. Let us assume we will add a 3-D variable 
which we will name tflux. The declaration statement will then be modified to:

! Variables to be dimensioned by (nzp,nxp,nyp)
 real, pointer, dimension(:,:,:) :: tkep,epsp,hkm,vkm,vkh,cdrag,tflux

2) Add the allocation to the alloc_turb routine:

      subroutine alloc_turb (turb,n1,n2,n3,ng)
.
.
.
      allocate (turb%tflux(n1,n2,n3))

Include the proper conditional statements if the allocation is dependent on namelist 
options.

3) Add the deallocate and nullify calls to nullify_turb and dealloc_turb routines. Note 
the associated intrinsic function will check to see if the array exists before 
performing the functions.

4) Add a tflux call to filltab_turb:

Notes:
 The turbm datatype is used for storing the time-averaged fields. Even if you 

have no plans on using them, include it in the call (memory is not actually 
allocated if you aren’t using them).

 The hist table is obsolete, as history files are no longer written. Just the anal 
table would be fine.

 You need to determine which parallel table(s) to include. In this example, 
most likely only mpt3 is needed, unless you do want this variable to be read 
on a history restart. Then mpti is required also.

All that is left, then, is to add the new array to the appropriate routines to actually fill in the 
values.

      subroutine filltab_turb (turb,turbm,imean,n1,n2,n3,ng)
.
.
.
         if (associated(turb%tflux))  &
             call vtables2 (turb%tflux(1,1,1),turbm%tflux(1,1,1)  &
                 ,ng, npts, imean,  &
                 'TFLUX :3:hist:anal:mpti:mpt3:mpt1')



And of course, there would be REVU modifications if you wanted to access the variable…

…a new prognostic variable.

In past RAMS versions, many users added new prognostic variables by using the 
NADDSC feature. In v6.0, it is much easier to simply add the variable to an existing 
module, or if it is a new parameterization, to add a new module.

The modifications to add a new prognostic variable start out exactly the same as above. 
Some additional comments:

1) The RAMS naming conventions have a “P” as the last character of prognostic 
variable name. This “P” is replaced by a “T” for the tendency (see below).

2) Same

3) Same

4) If the variable needs to be communicated across parallel subdomain boundaries, the 
mpt1 table is needed to be specified. If you are not concerned with efficiency and 
you are not sure, you can specify this table anyway.

So, follow the 4 steps above, then let’s go on for a few more:

5) Edit mem_tend.f90. The declaration statements designate the names of the time 
tendency arrays (rate of change of the variable for a timestep). As in the comment 
for step 1, add a tendency array for your variable, taking into account the naming 
convention.

6) In subroutine alloc_tend, add the allocate statement for your tendency array.

7) Add the appropriate statements to nullify_tend and delloc_tend.

8) If the variable is to be considered a “scalar” variable, in filltab_tend, we must add a 
call to vtables_scalar to:

a. Associate the tendency array with the prognostic variable array
b. Give the scalar an internal name. This does not need to be the same as the 

name for the analysis files, but it can be.

What is meant by a “scalar” variable? If you specify a prognostic variable to be a 
scalar, it will be defined at the thermodynamic point in the stagger and it will be 
automatically advected, diffused (using the eddy viscosity for heat), participate in 
the two-way nesting algorithms, and updated in time with other scalars in the 
timestep cycle. Unless of course, you can add code to change this automatic 



behavior where you do not want it to occur (example: TKE is a scalar, but a 
different eddy viscosity coefficient is used.)

If you do not want the variable to be a scalar, it does not need to be included in 
filltab_tend.

That is all that needs to be done for the memory configuration. There still, of 
course, are things to consider. You may want to define an initial field for your 
variable. We will discuss that below. And you may want to add some source/sink 
terms to the model code. A simple example of specifying a tendency will be 
mentioned below also. 

Developing an entirely new memory module which includes prognostic variables is 
just as easy. One of the existing modules can be used as a template. The only 
additional step is that a section in src/memory/alloc.f90 needs to be added. Again, 
an existing section there can be used as a template.

Note that the scalar variables added through the NADDSC feature go through this 
same process. The various variable names are defaulted as follows:

 Internal scalar name: SCLP001, SCLP002, etc.
 Tendency pointer name: scalar_g(nsc,ng)%sclt
 Field pointer name: scalar_g(nsc,ng)%sclp

o nsc – scalar number (1:NADDSC)
o ng – grid number

 Analysis file name (also used in REVU): SCLP001, SCLP002, etc.



3 Customization of Initial Atmospheric Prognostic Fields

It is often desired to initialize certain atmospheric fields, such as potential temperature and 
moisture mixing ratio, with specific horizontally inhomogeneous perturbations.  For 
example, a high resolution simulation of a thunderstorm may be initialized with a local 
region of enhanced temperature and moisture to trigger the onset of convection at a specific 
location. Another example is in using automatically added scalar fields (see description of 
namelist variable NADDSC), where initial values of the scalar field are required to be 
nonzero. Or perhaps you have added your own prognostic variables, as mentioned above.  

Following is a simple example to modify or specify initial fields for RAMS. The following 
template subroutine, called subroutine bubble, is provided in the file ruser.f90 in order to 
customize one or more prognostic fields in the model. 

The first step is to determine where to call the perturbation routine. The usual place to call 
the routine is during the initialization procedure, before you need to worry about 
parallelization. This way, we have the full arrays available for all grids.

Note that the included subroutine bubble was intended to add a warm, moist perturbation 
to initiate convection. However, any type of values can be set for any field in a similar 
routine.

Take a look at src/init/rdint.f90. Find the following section (we will not specify line 
numbers, since they go out of date easily!):



!     Initialize past time level velocity and perturbation Exner 
function
!     on all grids.

   do ifm=1,ngrids
      call newgrid(ifm)
      call fldinit(1)
      call negadj1(nzp,nxp,nyp)
      call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

      if (level  ==  3) then
         call initqin(nzp,nxp,nyp        &
            ,micro_g(ifm)%q2    (1,1,1)  &
            ,micro_g(ifm)%q6    (1,1,1)  &
            ,micro_g(ifm)%q7    (1,1,1)  &
            ,basic_g(ifm)%pi0   (1,1,1)  &
            ,basic_g(ifm)%pp    (1,1,1)  &
            ,basic_g(ifm)%theta (1,1,1)  &
            ,basic_g(ifm)%dn0   (1,1,1)  )
         if(icloud == 7) call initqin2(nzp,nxp,nyp        &
            ,micro_g(ifm)%cccnp (1,1,1)  )
         if(ipris == 7) call initqin3(nzp,nxp,nyp        &
            ,micro_g(ifm)%cifnp (1,1,1)  &
            ,basic_g(ifm)%dn0   (1,1,1))
      endif

   enddo 

This section performs various initialization functions and is executed for all 
RUNTYPE=’INITIAL’ types. It is also the last grid loop in this section.

So here is one good place to add a call to bubble. 

! Initialize past time level velocity and perturbation Exner function
!     on all grids.

   do ifm=1,ngrids
      call newgrid(ifm)
      call fldinit(1)
      call negadj1(nzp,nxp,nyp)
      call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

      call bubble (n1,n2,n3, &
                   basic_g(ifm)%thp(1,1,1), basic_g(ifm)%rtp(1,1,1))
.
.
.



subroutine bubble(m1,m2,m3,thp,rtp)
implicit none
integer :: m1,m2,m3,i,j,k
real, dimension(m1,m2,m3) :: thp,rtp
      do j = 1,1
         do i = 17,26
            do k = 2,7
               thp(k,i,j) = thp(k,i,j) + 5.
               rtp(k,i,j) = rtp(k,i,j) * 1.2
            enddo
         enddo
      enddo
return
end

In this example, two 3-D arrays, potential temperature (thp) and total water mixing ratio 
(rtp) are passed to the subroutine, as are the dimensions (m1,m2,m3) of the arrays.  They 
illustrate an example where thp (theta il) is increased by 5 K and rtp (total water mixing 
ratio) is increased by 20% in the lowest 6 model levels (k=2,7) and over 10 different 
locations in the x-direction (i=17,26).  

Note that because of where we placed the call statement, this routine will be called for all 
grids. If you only wanted to give the perturbation to grid 2, you can place the call outside of 
the grid loop, then specify the grid index and explicit grid point dimensions:

!     Initialize past time level velocity and perturbation Exner 
function
!     on all grids.

   do ifm=1,ngrids
      call newgrid(ifm)
      call fldinit(1)
      call negadj1(nzp,nxp,nyp)
      call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

.

.

.
   enddo

   call bubble (nnzp(2),nnxp(2),nnyp(2)   &
              , basic_g(2)%thp(1,1,1), basic_g(2)%rtp(1,1,1))

Or, you could leave the call in the original location and pass in the grid number, then check 
it in the bubble routine:



!     Initialize past time level velocity and perturbation Exner 
function
!     on all grids.

   do ifm=1,ngrids
      call newgrid(ifm)
      call fldinit(1)
      call negadj1(nzp,nxp,nyp)
      call thermo(nzp,nxp,nyp,1,nxp,1,nyp,'THRM_ONLY')

      call bubble (n1,n2,n3, ,ifm, &
                   basic_g(ifm)%thp(1,1,1), basic_g(ifm)%rtp(1,1,1))
.
.

subroutine bubble(m1,m2,m3,ng,thp,rtp)
implicit none
integer :: m1,m2,m3,ng,i,j,k
real, dimension(m1,m2,m3) :: thp,rtp

   if (ng == 2) then
      do j = 1,1
         do i = 17,26
            do k = 2,7
               thp(k,i,j) = thp(k,i,j) + 5.
               rtp(k,i,j) = rtp(k,i,j) * 1.2
            enddo
         enddo
      enddo
   endif
return
end

And please note: you can change the name of the routine. It does NOT have to be called 
bubble!



4 Adding a New Source Term to Model Prognostic Fields

Another need which sometimes arises in the use of the atmospheric model is to add an 
artificial forcing term to one or more prognostic fields.  For example, as an alternative to 
placing a warm, moist perturbation in the initial fields to trigger convection as described in 
the previous section, a heat and moisture source may instead be imposed in a region of the 
domain.  This source adds the heat and moisture gradually over a period of time.

The following template subroutine, called subroutine force, is a simple example which 
customizes a prognostic field in the model.

      subroutine force(n1,n2,n3,tht)
      implicit none
      integer :: n1,n2,n3
      real :: tht(n1,n2,n3)
 
      integer :: i,j,k

      do j = 10,12
         do i = 17,26
            do k = 2,7
               tht(k,i,j) = tht(k,i,j) + 0.001
            enddo
         enddo
      enddo

      return
      end

In this example, the 3-D array  tht, which is the potential  temperature tendency in [K/s], is 
incremented by a value of 0.001 K/s.

A routine such as force should be called from subroutine TIMESTEP (rtimh.f90) by adding 
a call such as the following after the call to TEND0 (which will zero out all tendency 
arrays), but before the call to PREDTR:

    if(time < 1800.) call force(nzp,nxp,nyp,tend%tht(1))

In this example, the artificial forcing term is applied to tht only during the first 1800 
seconds of the simulation.  As you should have seen in mem_tend.f90, the tendency arrays 
are one dimensional, since they are used for multiple grids.

A BIG caveat: the preceding code is only correct for a run on a single processor. So it 
might be appropriate to include here a few words about distributed memory parallelism.

When you run in parallel, RAMS, as most codes of this kind, uses domain decomposition 
to achieve parallelism. This means that portions of each grid are executed on different 
processors. Each processor is only given a portion of the total domain. When subroutine 



timestep is executed, there are numerous copies of the routine that are running, each with 
its own domain portion. Therefore, when calling a routine such as force, you need to make 
sure that the perturbation is applied in the proper location relative to the whole domain.

When code is executed with a “grids” loop, which includes a call newgrid (subroutine 
timestep qualifies), there are several variables set up for you to help locate this subdomain:

 mxp, myp, mzp – mxp and myp are the total number of horizontal grid points of the 
subdomain on the current processor. mzp is the same as nnzp(ngrid). For all 3-D, 2-
D, soil, snow, etc. variables, these are the array bounds that are actually allocated 
on a processor.

 ia, iz, ja, jz – the bounds of the subdomain relative to mxp and myp which this 
processor is responsible for updating the variables. A do loop then, such as:

do j = ja,jz
   do i = ia,iz
.
.
.
   enddo
enddo

will loop over all the columns which this processor will update.

 i0, j0 – the “offsets” for this processor. For example, when you add the i value from 
the previous loop to i0, you will get the i grid point value relative to the whole grid, 
not just the subdomain portion.

 ibcon – not used here, but is a 4-byte flag designating whether the subdomain 
boundaries are full domain boundaries

So let’s rewrite subroutine force taking into account the parallelism. We will apply the 
perturbation over the same points relative to the entire grid.

    if(time < 1800.) call force(mzp,mxp,myp  &
       ,ia,iz,ja,jz,i0,j0,tend%tht(1))

The routine will be called from the same location.



      subroutine force(m1,m2,m3  &
         ,ia,iz,ja,jz,i0,j0,tht)
      implicit none
      integer :: m1,m2,m3,ia,iz,ja,jz,i0,j0
      real :: tht(m1,m2,m3)
 
      integer :: i,j,k

      do j = ja,jz
         do i = ia,iz
            do k = 2,7
               if (i+i0 >= 17 .and. i+i0 <= 26 &
               .and. j+j0 >= 10 .and. j+j0 <=12) &
                   tht(k,i,j) = tht(k,i,j) + 0.001
            enddo
         enddo
      enddo

      return
      end

There are obviously more efficient ways to write this, but it provides an example.
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